Gaëtan Cassiers, Siemen Dhooghe, Thorben Moos, Sayandeep Saha, François-Xavier Standaert
ePrint Report
Cryptographic implementations are vulnerable to active physical attacks where adversaries inject faults to extract sensitive information. Existing fault models, such as the threshold and random fault models, assume limitations on the amount or probability of injecting faults. Such models, however, insufficiently address the case of practical fault injection methods capable of faulting a large proportion of the wires in a circuit with high probability. Prior works have shown that this insufficiency can lead to concrete key recovery attacks against implementations proven secure in these models. We address this blind spot by introducing the uniform random fault model, which relaxes assumptions on the amount/probability of faults and instead assumes a uniform probabilistic faulting of all wires in a circuit or region. We then show that security in this new model can be reduced to security in the random fault model by inserting canaries in the circuit to ensure secret-independent fault detection. We prove that combining canaries with a more classical fault countermeasure such as redundancy can lead to exponential fault security in the uniform random fault model at a polynomial cost in circuit size in the security parameter. Finally, we discuss the interactions between our work and the practical engineering challenges of fault security, shedding light on how the combination of state-of-the-art countermeasures may protect against injections of many high probability faults, while opening a path to methodologies that formally analyze the guarantees provided by such countermeasures.